АЛГОРИТМ ФОРМИРОВАНИЯ СПИСКА СЛОВ С ЗАДАННЫМ РАСПРЕДЕЛЕНИЕМ БИГРАММ ДЛЯ РЕГИСТРАЦИИ БИОМЕТРИЧЕСКИХ КОНТРОЛЬНЫХ ШАБЛОНОВ КЛАВИАТУРНОГО ПОЧЕРКА
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
1. Dimaratos A., Pöhn D. (2023). Evaluation scheme to analyze keystroke dynamics methods. In: Proceedings of the 9th International Conference on Information Systems Security and Privacy. SCITEPRESS – Science and Technology Publications, p. 357–365. DOI: http://dx.doi.org/10.5220/0011626100003405.
2. Arsh A., Kar N., Das S., Deb S. (2024). Multiple approaches towards authentication using keystroke dynamics. Procedia Computer Science, v. 235, p. 2609–2618. International Conference on Machine Learning and Data Engineering (ICMLDE 2023).
DOI: https://doi.org/10.1016/j.procs.2024.04.246.
3. Kim Y., Kwon N., Shin D. (2024). KDPrint: Passive authentication using keystroke dynamics-to-image encoding via standardization. arXiv. DOI: https://doi.org/10.48550/arXiv.2405.01080.
4. Stragapede G., Vera-Rodriguez R., Tolosana R. et al. (2024). KVC-onGoing: Keystroke verification challenge. arXiv.
DOI: 10.48550/arXiv.2412.20530.
5. Simão M., Prado F., Wahab O.A., Avila A. (2024). TempCharBERT: Keystroke dynamics for continuous access control based on pre-trained language models. arXiv.
DOI: https://doi.org/10.48550/arXiv.2411.07224.
6. González N., Stragapede G., Vera-Rodriguez R., Tolosana R. (2025). Type2Branch: Keystroke biometrics based on a dual-branch architecture with attention mechanisms and set2set loss. arXiv.
DOI: https://doi.org/10.48550/arXiv.2405.01088.
7. Stragapede G., Vera-Rodriguez R., Tolosana R. et al. (2024). IEEE BigData 2023 keystroke verification challenge (KVC). arXiv.
DOI: https://doi.org/10.48550/arXiv.2401.16559.
8. Ismail M.G., Salem M.A., Abd El Ghany M.A., Aldakheel E.A., Abbas S. (2024). Outlier detection for keystroke biometric user authentication. PeerJ Computer Science, v. 10, article e2086.
DOI: 10.7717/peerj-cs.2086.
9. Kaluarachchi N., Kandanaarachchi S., Moore K., Arakala A. (2023). DEFT: A new distance-based feature set for keystroke dynamics. arXiv. DOI: https://doi.org/10.48550/arXiv.2310.04059.
10. Wahab A.A., Hou D., Cheng N. et al. (2025). Impact of data breadth and depth on performance of Siamese neural network model: Experiments with three keystroke dynamic datasets. arXiv.
DOI: https://doi.org/10.48550/arXiv.2501.07600.
11. Senarath D., Sanuja T., Maduka V., Rasnayaka S., Wickramanayake S., Meedeniya D. (2023). BehaveFormer: A framework with spatio-temporal dual attention transformers for IMU-enhanced keystroke dynamics. In: Proceedings of the International Joint Conference on Biometrics (IJCB), p. 1–9.
DOI: 10.1109/IJCB57857.2023.10448997.
12. Sharma A., Jureček M., Stamp M. (2023). Keystroke dynamics for user identification. arXiv.
DOI: 10.48550/arXiv.2307.05529.
13. Wyciślik Ł., Wylężek P., Momot A. (2024). The improved biometric identification of keystroke dynamics based on deep learning approaches. Sensors, v. 24, no. 12, article 3763.
DOI: 10.3390/s24123763.
DOI: http://dx.doi.org/10.26583/bit.2025.3.06
Ссылки
- На текущий момент ссылки отсутствуют.

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.





