СВЕРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ В ДИАГНОСТИКЕ НОВООБРАЗОВАНИЙ КОЖИ
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
1. Потекаев Н.Н., Титов К.С., Маркин А.А., Кашурников А.Ю. Эпидемиология меланомы кожи в Российской Федерации и в городе Москве за 10 лет (2008-2018 гг.). Клиническая дерматология и венерология. 2020. Т. 19. № 6. С. 810-816. DOI: http://dx.doi.org/10.17116/klinderma202019061810.
2. Малишевская Н.П., Соколова А.В., Демидов Л.В. Современное состояние заболеваемости меланомой кожи в Российской Федерации и федеральных округах. Медицинский совет. 2018. № 10. С. 161–165.
DOI: http://dx.doi.org/10.21518/2079-701X-2018-10-161-165.
3. Жучков М.В., Булиньска А.К., Киттлер Г. Применение алгоритма «Хаос и Признаки» в оценке дерматоскопических изображений пигментных новообразований кожи. Дерматология (Прил. К журн. Consilium Medicum). 2017. № 2. С. 5–13.
URL: https://omnidoctor.ru/upload/iblock/c08/
c0835e7b934d6faa49b490378d8df137.pdf (дата обращения: 04.12.2021).
4. Nikitaev V.G., Pronichev A.N., Tamrazova O.B., Sergeev V.Yu., Druzhinina E.A., Medvedeva O.A., Solomatin M.A. Model of a Decision-Making System for the Diagnosis of Melanoma Using Artificial Intelligence. Biomedical Engineering. 2021. Vol. 55. No. 3. P. 215–218.
DOI: http://dx.doi.org/10.1007/s10527-021-10104-z.
5. Nikitaev V.G., Pronichev A.N., Tamrazova O.B., Sergeev V.Yu., Sergeev Yu.Yu., Medvedeva O.A., Solomatin M.A., Kozlov V.S. Color recognition of dermatoscopic images of skin neoplasms. Journal of Physics: Conference Series. 2021. Vol. 2058. No. 1. 012027.
DOI: http://dx.doi.org/10.1088/1742-6596/2058/1/012027.
6. Khan M.Q., Hussain A., Rehman S.U., Khan U., Maqsood M., Mehmood K., Khan M.A. Classification of Melanoma and Nevus in Digital Images for Diagnosis of Skin Cancer. IEEE Access. 2019. Vol. 7.
P. 90132–90144. DOI: http://dx.doi.org/10.1109/ACCESS.2019.2926837.
7. Nezhadian F.K., Rashidi S. Melanoma skin cancer detection using color and new texture features. Artificial Intelligence and Signal Processing Conference (AISP) IEEE. 2017. P. 1–5.
DOI: http://dx.doi.org/10.1109/AISP.2017.8324108.
8. JC Kavitha, A. Suruliandi, D. Nagarajan Melanoma Detection in Dermoscopic Images using Global and Local Feature Extraction. International Journal of Multimedia and Ubiquitous Engineering. 2017. Vol. 12, no. 5. P. 19–28.
DOI: http://dx.doi.org/10.14257/ijmue.2017.12.5.02.
9. Nikitaev V.G., Tamrazova O.B., Pronichev A.N., Sergeev V.Y., Druzhinina E.A. Algorithm for the Analysis of Pigment Network Characteristics in Diagnosing Melanoma. Mathematical Models and Computer Simulations. 2021. Vol. 13. No 5. P. 861–869.
DOI: http://dx.doi.org/10.1134/S2070048221050161.
10. J.L. Garcia-Arroyo, B. Garcia-Zapirain. Recognition of pigment network pattern in dermoscopy images based on fuzzy classification of pixels. Computer Methods and Programs in Biomedicine. 2018. Vol. 153. P. 61–69. DOI: http://dx.doi.org/10.1016/j.cmpb.2017.10.005.
11. Nikitaev, V.G., Pronichev, A.N., Tamrazova, O.B. et al. Detection of Circles as Structural Elements in Dermatoscopic Images of Skin Neoplasms in the Diagnosis of Melanoma. Biomedical Engineering. 2021. Vol. 55. No. 4. P. 255–258. DOI: http://dx.doi.org/10.1007/s10527-021-10113-y.
12. Yunendah Nur Fu’adah, NK Caecar Pratiwi, Muhammad Adnan Pramudito, Nur Ibrahim. Convolutional Neural Network (CNN) for Automatic Skin Cancer Classification System. IOP Conf. Series: Materials Science and Engineering. 2020. Vol. 982. 012005.
DOI: http://dx.doi.org/10.1088/1757-899X/982/1/012005.
13. M. Hasan, S.D. Barman, S. Islam, A.W.Reza Skin Cancer Detection Using Convolutional Neural Network. ICCAI '19: Proceedings of the 2019 5th International Conference on Computing and Artificial Intelligence April 2019. P. 254–258. DOI: https://doi.org/10.1145/3330482.3330525.
14. T.J. Brinker, A. Hekler, A.H. Enk, J. Klode, A. Hauschild, C. Berking, B. Schilling, S. Haferkamp,
D. Schadendorf, S. Frцhling, J.S. Utikal, C. Kalle. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. European Journal of Cancer. 2019. Vol. 111. P. 148–154.
DOI: http://dx.doi.org/10.1016/j.ejca.2019.02.005.
15. E.B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, S. Thrun. Dermatologist level classification of skin cancer with deep neural networks. Nature. 2017. Vol. 542. P. 115–118.
DOI: http://dx.doi.org/10.1038/nature21056.
16. Russakovsky O., Deng J., Su H., et al. ImageNet Large-Scale Visual Recognition Challenge. International. Journal of Computer Vision. 2015. Vol. 115. P. 211–252. DOI: https://doi.org/10.1007/s11263-015-0816-y.
17. Tschandl, P., Rosendahl, C. & Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data. 2018. Vol. 5. 180161.
DOI: https://doi.org/10.1038/sdata.2018.161.
18. Sergeev V.Yu., Sergeev Yu.Yu., Tamrazova O.B., Nikitaev V.G., Pronichev A.N. Automated Remote Diagnosis of Dermatological Neoplasms. Biomedical Engineering. 2019. Vol. 53. P. 194–195.
DOI: https://doi.org/10.1007/s10527-019-09907-y.
DOI: http://dx.doi.org/10.26583/bit.2021.4.09
Ссылки
- На текущий момент ссылки отсутствуют.

Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.