СРАВНИТЕЛЬНЫЙ АНАЛИЗ СТОЙКОСТИ РЕЗИСТИВНОЙ И ДРУГИХ ВИДОВ ЭНЕРГОНЕЗАВИСИМОЙ ПАМЯТИ К ВОЗДЕЙСТВИЮ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ КОСМИЧЕСКОГО ПРОСТРАНСТВА

Андрей Г. Петров, Иван И. Швецов-Шиловский, Сергей Б. Шмаков, Анастасия В. Уланова, Анна Б. Боруздина

Аннотация


В данной работе рассмотрены перспективы использования микросхем резистивной памяти (ReRAM, CBRAM) в космической аппаратуре. Представлены результаты исследований радиационного подведения отдельных тестовых ячеек резистивной памяти ReRAM и серийно-выпускаемых микросхем при воздействии тяжелых заряженных частиц и накопленной дозы. Проведен сравнительный анализ достигнутых уровней стойкости к воздействию ионизирующего излучения космического пространства резистивной памяти и микросхем других типов энергонезависимой памяти, таких как флэш-память, сегнетоэлектрическая память (FRAM) и магниторезистивная память (MRAM). Описаны основные преимущества и недостатки использования различных технологий для изготовления микросхем энергонезависимой памяти с повышенной стойкостью к ионизирующему воздействию.


Ключевые слова


резистивная память, тяжёлые заряженные частицы, накопленная доза, микросхема энергонезависимой памяти.

Полный текст:

PDF

Литература


1. Nikiforov A.Y., Boychenko D.V., Telets V.A., Smolin A.A., Elesin V.V., Ulanova A.V, and Kessarinskiy L.N. Basic trends in electronic components product range development: Radiation hardness aspects, in Proc. 30th Int. Conf. on Microelectronics, MIEL 2017; Nis, Serbia, October 2017, p. 45–48.
DOI: https://doi.org/10.1109/MIEL.2017.8190066.

2. Boruzdina A., Ulanova A., Grigor'ev N., Nikiforov A. Radiation-induced degradation in the dynamic parameters of memory chips, Russian Microelectronics. 2012, vol. 41, no. 4, p. 259–265.
DOI: https://doi.org/1010.1134/s106373971204004x

3. Petrov Andrey, Vasil’ev Alexey, Ulanova Anastasia, Chumakov Alexander and Nikiforov Alexander. Flash memory cells data loss caused by total ionizing dose and heavy ions. Open Physics. 2014, vol. 12, no. 10,
p. 725–729. DOI: https://doi.org/10.2478/s11534-014-0503-6.

4. Boruzdina A.B., Ulanova A.V., Orlov A.A., Pechenkin A.A., Yanenko A.V. and Nikiforov A.Y. Influence of FRAM operational mode on its SEE susceptibility, 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS). 2016, p. 1–4.
DOI: https://doi.org/10.1109/RADECS.2016.8093213.

5. Pechenkin A.A., Boruzdina A.B., Yanenko A.V., Protasov D.E., Shvetsov-Shilovskiy I.I. and Sangalov A.A. SEL and cell failures in MRAM under ion and focused laser irradiation. 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS). 2017, p. 1–6.
DOI: https://doi.org/10.1109/RADECS.2017.8696211.

6. Zhang Yang; Duan Ziqing; Li et al. Vertically integrated ZnO-Based 1D1R structure for resistive switching. Journal of Physics D: Applied Physics. 2013, 46 (14): 145101.
DOI: https://doi.org/10.1088/0022-3727/46/14/145101.

7. Sklénard B., Blaise P., Traoré B., Dragoni A., Nail C. and Vianello E. Advances in the understanding of microscopic switching mechanisms in ReRAM devices (Invited paper), 47th European Solid-State Device Research Conference (ESSDERC). 2017, p. 46–49. DOI: https://doi.org/10.1109/ESSDERC.2017.8066588.

8. Daniele Ielmini. Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 2016, 31 063002. DOI: https://doi.org/10.1088/0268-1242/31/6/063002.

9. Zahoor F., Azni Zulkifli T.Z. & Khanday F.A. Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications. Nanoscale Res Lett 15, 90 (2020).
DOI: https://doi.org/10.1186/s11671-020-03299-9.

10. Jana D., Roy S., Panja R. et al. Conductive-bridging random access memory: challenges and opportunity for 3D architecture. Nanoscale Res Lett 10, 188 (2015). DOI: https://doi.org/10.1186/s11671-015-0880-9.

11. Kobayashi Masaharu & Wu Jixuan & Mo Fei & Saraya Takuya & Hiramoto Toshiro. (2020). (Invited) 3D Neural Network: Monolithic Integration of Resistive-RAM Array with Oxide-Semiconductor FET. ECS Transactions. 98. p. 57–61. DOI: https://doi.org/10.1149/09808.0057ecst.

12. Shvetsov-Shilovskiy I.I., Boruzdina A.B., Ulanova A.V., Orlov A.A., Amburkin K.M. and. Nikiforov A.Y. Measurement system for test memory cells based on keysight B1500A semiconductor device analyzer running LabVIEW software. International Siberian Conference on Control and Communications (SIBCON). 2017,
p. 1–4. DOI: https://doi.org/10.1109/SIBCON.2017.7998542.

13. Butcher B., He X., Huang M., Wang Y., Liu Q., Lv H., Liu M. & I. O. D. Kumar R., Aluguri U., Chand T.Y. Tseng, Metal oxide resistive switching memory: Materials, properties and switching mechanisms, Ceramics International. 2017, vol. 43, supplement 1, p. S547–S556. DOI: https://doi.org/10.1016/j.ceramint.2017.05.289.

14. Wang W. (2010). Proton-based total-dose irradiation effects on Cu/HfO2:Cu/Pt ReRAM devices. Nanotechnology, 21 47, 475206. DOI: https://doi.org/10.1088/0957-4484/21/47/475206.

15. Tong W.M. et al. Radiation Hardness of TiO2{\rm TiO}_{2} Memristive Junctions. IEEE Transactions on Nuclear Science, vol. 57, no. 3, p. 1640–1643, 2010. DOI: https://doi.org/10.1109/TNS.2010.2045768.

16. Hughart D.R. et al. Total ionizing dose and displacement damage effects on TaOx memristive memories. IEEE Aerospace Conference, 2013, p. 1–10.
DOI: https://doi.org/10.1109/AERO.2013.6497381.

17. He X., Wang W., Butcher B., Tanachutiwat S. and Geer R.E. Superior TID Hardness in TiN/HfO $_{2}$/TiN ReRAMs After Proton Radiation. IEEE Transactions on Nuclear Science, vol. 59, no. 5,
p. 2550–2555, 2012, DOI: https://doi.org/10.1109/TNS.2012.2208480.

18. Lee D. et al. Proton Irradiation Effects on Resistive Random Access Memory With ZrO_{\rm x}_{\rm x} /HfO_{\rm x}_{\rm x} Stacks. IEEE Transactions on Nuclear Science, vol. 58, no. 6, p. 3317–3320, 2011.
DOI: https://doi.org/10.1109/TNS.2011.2165731.

19. Taggart J.L., Chen W., Gonzalez-Velo Y., Barnaby H.J., Holbert K. and. Kozicki M.N. In Situ Synaptic Programming of CBRAM in an Ionizing Radiation Environment. IEEE Transactions on Nuclear Science,
vol. 65, no. 1, p. 192–199, 2018. DOI: https://doi.org/10.1109/TNS.2017.2779860.

20. Vianello E. et al. Sb-doped GeS2 as performance and reliability booster in Conductive Bridge RAM. International Electron Devices Meeting. 2012, p. 31.5.1–31.5.4.
DOI: https://doi.org/10.1109/IEDM.2012.6479145.

21. Boruzdina Anna B., Anastasia V. Ulanova, Alexander I. Chumakov and Andrey V. Yanenko. A method for registration of multiple cell upsets in high capacity memory cells induced by single nuclear particles. Russian Microelectronics 45 (2016): 292-297.
DOI: https://doi.org/10.1134/S1063739716040041.

22. Boruzdina A.B, Orlov A.A., Ulanova A.V., Grigor'ev N.G. and Nikiforov A.Y. Automatic control system for memory chips performance in a radiation experiment. International Siberian Conference on Control and Communications (SIBCON). 2015, p. 1–4. DOI: https://doi.org/10.1109/SIBCON.2015.7147007.

23. Boruzdina Anna, Yanenko Andrey, Tikhomirov Georgy and Tumanov Vitaly. NI Based System for Seu Testing of Memory Chips for Avionics. MATEC Web Conf.,vol. 79, 2016.
DOI: https://doi.org/10.1051/matecconf/20167901028.

24. Chepov V.A., Shmakov S.B., Shvetsov-Shiovsky I.I., Petrov A.G. and Kalashnikov V.D. Solid-state drives parameters control system for ionizing radiation tests, in Proc. 15th International Siberian Conference on Control and Communications, SIBCON 2021, May 13-15, article number 9438860.
DOI: https://doi.org/10.1109/SIBCON50419.2021.9438860.

25. Objective Analysis и Coughlin Associates Presentation.
URL: https://www.snia.org/sites/default/files/SDC/2019/presentations/ (дата обращения: 18.05.2022).

26. Pechenkin A.A., Boruzdina A.B., Yanenko A.V., Protasov D.E., Shvetsov-Shilovskiy I.I. and Sangalov A.A. SEL and cell failures in MRAM under ion and focused laser irradiation, 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS). 2017, p. 1–6.
DOI: https://doi.org/10.1109/RADECS.2017.8696211.

27. 3D PLUS Products. URL: https://www.3d-plus.com/products.php (дата обращения: 18.05.2022).

28. Fudan Products and solutions. URL: http://eng.fmsh.com/feihuifaxingcunshuqi/ (дата обращения: 18.05.2022).

29. Zhou Q. et al. Design of a Compact and Reconfigurable Onboard Data Handling System. IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom). 2018, p. 260–264. DOI: https://doi.org/10.1109/BDCloud.2018.00049.

30. Infineon press release. URL:https://www.infineon.com/cms/en/about-infineon/press/market-news/2021/INFATV202107-085.html (дата обращения: 18.05.2022).

31. Caes products. URL: https://caes.com/products/radiation-hardened-solutions-high-reliability-components/memory (дата обращения: 18.05.2022).

32. BAE Systems. Radiation-hardened electronics product guide. URL: https://www.baesystems.com/en-media/uploadFile/20210404065929/1434555681546.pdf (дата обращения: 18.05.2022).




DOI: http://dx.doi.org/10.26583/bit.2022.2.08

Ссылки

  • На текущий момент ссылки отсутствуют.


Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.