ПРИМЕНЕНИЕ НЕЙРОННЫХ СЕТЕЙ ДЛЯ СОЗДАНИЯ И ТЕСТИРОВАНИЯ ГЕНЕРАТОРОВ ПСЕВДОСЛУЧАЙНЫХ ЧИСЕЛ
Аннотация
Ключевые слова
Полный текст:
PDFЛитература
1. Apdullah Y., Yakup K. Neural Network Based Cryptography. Neural Network World. 2014, no. 24, p. 177–192.
DOI: http://dx.doi.org/10.14311/NNW.2014.24.011.
2. Kannan M.R. Gnanam V. Neural network based decryption for random encryption algorithms. Proceedings of 3rd International Conference on Anti-counterfeiting, Security, and Identification in Communication, Hong Kong, 20-22 August 2009, p. 603–605.
DOI: http://dx.doi.org/10.1109/ICASID.2009.5277002.
3. Oak R., Rahalkar C., Dhaval G. Using Generative Adversarial Networks for Secure Pseudorandom Number Generation. Proceedings of 2019 ACM SIGSAC Conference, London, 11–15 November 2019, p. 2597–2599.
DOI: http://dx.doi.org/10.1109/BigComp.2018.00091.
4. İnce K. Security Analysis of Java SecureRandom Library. Avrupa Bilim ve Teknoloji Dergisi. 2021, no. 24,
p. 157–160. DOI: http://dx.doi.org/10.31590/ejosat.900956.
5. Lauria F.E. On Neurocryptology. Proceedings of the Third Italian Workshop on Parallel Architectures and Neural Networks. Salerno, 15-18 May, 1990. p. 337–343.
6. Pointcheval D. Neural networks and their cryptographic applications. Livre des resumes Eurocode Institute for Research in Computer Science and Automation. 1994. p. 1–7.
7. Schneider B. Applied Cryptography. Protocols, Algorithms, and Source codes in C. New York, Wiley,
1996. – 758 p.
8. Luciano D., Prichett G. Cryptology: From Caesar Ciphers to Public-key Cryptosystems. The College Mathematics Journal. 1987, no. 18(1), p. 2–17.
9. Godhavari T., Alainelu N.R., Soundararajan R. Cryptography using neural network. IEEE INDICON 2005 Conf., Chennai, India; 11-13 December 2005, p. 258–261.
DOI: http://dx.doi.org/10.1109/INDCON.2005.1590168.
10. Arvandi M., Wu S., Sadeghian A., Melek W.W., Woungang I. Symmetric Cipher Design Using Recurrent Neural Networks. The 2006 IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 2006, p. 2039–2046.
DOI: http://dx.doi.org/10.1109/IJCNN.2006.246972.
11. Guo D., Cheng L.-M., Cheng L. L. A new symmetric probabilistic encryption scheme based on chaotic attractors of neural networks. Applied Intelligence. 1999, no. 10(1), p. 71–84.
DOI: http://dx.doi.org/10.1023/A:1008337631906.
12. Noughabi A. M. N., Sadeghiyan B. Design of S-boxes based on neural networks. Proceedings of “International Conference on Electronics and Information Engineering”, Kyoto, 1-3 August 2010, p. 172–178.
DOI: http://dx.doi.org/10.1109/ICEIE.2010.5559741.
13. Karras D. A. Zorkadis V. On neural network techniques in the secure management of communication systems through improving and quality assessing pseudorandom stream generators. Neural networks: the official journal of the International Neural Network Society. 2003, no. 16(5-6), p. 899–905.
DOI: http://dx.doi.org/10.1016/S0893-6080(03)00124-2.
14. Ruttor A. Neural Synchronization and Cryptography. PhD thesis. Bayerischen Julius-Maximilians-Universitat at Wurzburg. 2006. URL: https://arxiv.org/pdf/0711.2411.pdf (дата обращения: 03.03.2023).
15. Sadırodlu S., Ozkaya N. Neural Solutions for Information Security. Journal of Polytechnic. 2007, vol. 10,
no. 1, p. 21–25. URL: https://dergipark.org.tr/en/download/article-file/384606 (дата обращения: 03.03.2023).
16. Иванов М.А., Чугунков И.В. Криптографические методы защиты информации в компьютерных системах и сетях: Учебное пособие. Под ред. М.А. Иванова. М.: НИЯУ МИФИ, 2012. – 400 с.
17. Blum L., Blum M., Shub M. A simple unpredictable pseudo random number generator. SIAM Journal on Computing. 1986, vol. 15, no. 2, p. 364–383. DOI: https://doi.org/10.1137/0215025.
18. Matsumoto M., Nishimura T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modelling and Computer Simulation. 1998, vol. 8, no. 1, p. 3–30.
DOI: https://doi.org/10.1145/272991.272995.
19. Abdi H. A neural network primer. Journal of Biological Systems. 1994, vol. 2, No. 3, p. 247–281.
DOI: https://doi.org/10.1142/S0218339094000179.
20. Chugunkov I.V., Ivanov M.A., Gridneva E.A., Shestakova N.Y. Classification of pseudo-random number generators applied to information security. Proceedings of 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, 1 – 3 February 2017,
p. 370–373. DOI: https://doi.org/10.1109/EIConRus.2017.7910569.
21. Eastlake D.E., Jones P.E. US Secure Hash Algorithm 1 (SHA1). Request for Comments. 2001, no. 3174,
p. 1–22. DOI: https://doi.org/10.17487/RFC3174.
22. Chugunkov I.V., Gulyaev V.A., Baranova E.A. Method for Improving the Statistical Properties of Pseudo-random Number Generators. Proceedings of 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, Russia, 28 – 31 January 2019, p. 206–209.
DOI: https://doi.org/10.1109/EIConRus.2019.8656699.
23. Fausett V.L. Fundamentals of neural networks: architectures, algorithms, and applications. Pearson, USA, 1994. – 480 p.
24. McCulloch W.S., Pitts W. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics. 1943, no. 5(4), p.115–133.
DOI: https://doi.org/10.1007/BF02459570.
25. Gurney K. An Introduction to Neural Networks (1st ed.). London: CRC Press, 1997. – 234 p.
26. Vrahatis M., Magoulas G., Parsopoulos K., Plagianakos V. Introduction to artificial neural network training and applications. Proceedings of 15th Annual Conference of Hellenic Society for Neuroscience, Greece,
27 – 29 October 2000, p. 1–14.
DOI: https://doi.org/10.13140/2.1.1755.2322.
27. Kingma D.P., Ba J. Adam: A method for stochastic optimization. Proceedings of International Conference on Learning Representations (ICLR), San Diego, 7 – 9 May 2015, p. 1–13.
DOI: https://doi.org/10.48550/arXiv.1412.6980.
28. Abadi M., Barham P., Chen J. Tensorflow: A system for large-scale machine learning. Proceedings of 12th USENIX Symposium on Operating Systems Design and Implementation is sponsored by USENIX, Savannah, 2 – 4 November 2016, p. 265–283.
DOI: https://doi.org/10.48550/arXiv.1605.08695.
29. Paszke A., Gross S., Massa F. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. Advances in Neural Information Processing Systems, 2019, no. 32, p. 8024–8035.
URL: https://arxiv.org/pdf/1912.01703.pdf (дата обращения: 03.03.2023).
30. Chi-Kwong C., Cheng L.M. The convergence properties of a clipped Hopfield network and its application in the design of key stream generator. IEEE Transactions on Neural Networks. 2001, no. 12, p. 340–348.
DOI: https://doi.org/10.1109/72.914528.
31. Wang, Y., Wang, G., Zhang, H. (2010). Random Number Generator Based on Hopfield Neural Network and SHA-2 (512). In: Luo, Q. (eds) Advancing Computing, Communication, Control and Management. Lecture Notes in Electrical Engineering, vol 56. Springer, Berlin, Heidelberg. p. 198–205.
DOI: https://doi.org/10.1007/978-3-642-05173-9_26.
32. Desai V.V., Deshmukh V.B., Rao D.H. Pseudo Random Number Generator Using Elman. Proceedings of 2011 IEEE Recent Advances in Intelligent Computational Systems, Trivandrum, 22-24 September 2011,
p. 251–254. DOI: https://doi.org/10.1109/RAICS.2011.6069312.
33. Sutton, R.; Barto, A. Reinforcement Learning: An Introduction. IEEE Transactions on Neural Networks, vol. 9, no. 5, p. 1054–1054, Sept. 1998. DOI: https://doi.org/10.1109/TNN.1998.712192.
34. L’Ecuyer P., Simard R. TestU01: A C library for empirical testing of random number generators. ACM Transactions on Mathematical Software. 2007, vol. 33, no. 4, p. 22–40.
DOI: https://doi.org/10.1145/1268776.1268777.
35. Rukhin A., Soto J., Nechvatal J. et. al. A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22, 2010.
DOI: https://doi.org/10.6028/NIST.SP.800-22R1A.
36. Чугунков И.В. Методы и средства оценки качества генераторов псевдослучайных последовательностей, ориентированных на решение задач защиты информации. М.: МИФИ, 2012. – 236 с.
37. Kadhim M.H., Wijdan R.A. Binary Sequences Randomness Test Using Neural Networks. International Journal of Computer Science and Mobile Computing. 2015, vol. 4, p. 246–258.
DOI: https://doi.org/10.13140/RG.2.2.34592.23044.
38. Pol Yee L., De Silva L. C. Application of MultiLayer Perceptron Network as a one-way hash function. Proceedings of “2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)”, Hawaii, 12 – 17 May 2002, p. 1459–1462.
DOI: https://doi.org/10.1109/IJCNN.2002.1007732.
39. Anderson J. A., Rosenfeld, E. Neurocomputing: Foundations of research. Cambridge, USA, The MIT Press, 1988, – 685 p.
40. Desai V., Patil R., Rao D. Using Layer Recurrent Neural Network to Generate Pseudo Random Number Sequences. International Journal of Computational Science Issues. 2012, vol. 9, p. 324–334.
URL: https://www.semanticscholar.org/paper/Using-Layer-Recurrent-Neural-Network-to-Generate-Desai-Patil/9302db89e8e94e3d93608c2c4498af09e5446144 (дата обращения: 03.03.2023).
41. Pasqualini L., Parton M. Pseudo Random Number Generation: a Reinforcement Learning approach. Procedia Computer Science. 2020, vol. 170, p. 1122–1127.
DOI: https://doi.org/10.48550/arXiv.1912.11531.
42. Goodfellow I., Pouget-Abadie J., Mirza M., Xu B., Warde-Farley D.O.S., Courville A., Bengio Y. Generative adversarial nets. Advances in neural information processing systems. 2014, p. 2672–2680.
DOI: https://doi.org/10.48550/arXiv.1406.2661.
43. Ankit S., Milind C., Suhail B. Review of Deep Learning: Architectures, Applications and Challenges. International Journal of Computer Applications. 2022, no. 184, p. 1–13.
DOI: https://doi.org/10.5120/ijca2022922164.
44. Benti D.M., Janbhasha S., Desisa E.G. Identification of Generative Adversarial Network Forms, Open Issues, and Future Study Areas: A Study. In: Fong, S., Dey, N., Joshi, A. (eds) ICT Analysis and Applications. Lecture Notes in Networks and Systems, vol 517. Springer, Singapore, p. 303–312.
DOI: https://doi.org/10.1007/978-981-19-5224-1_31.
45. De Bernardi M., Khouzani, M.H.R., Malacaria, P. Pseudo-Random Number Generation Using Generative Adversarial Networks. In: Alzate, C., et al. ECML PKDD 2018 Workshops. ECML PKDD 2018. Lecture Notes in Computer Science(), vol. 11329. Springer, Cham. p. 1–10. DOI: https://doi.org/10.1007/978-3-030-13453-2_15.
46. Dourlens S. Applied neuro-cryptography. Master Thesis, The University of Paris, 1996.
47. Hochreiter S., Schmidhuber J. Long short-term memory. Neural Computation. 1997, vol. 9, no. 8,
p. 1735–1780. DOI: https://doi.org/10.1162/neco.1997.9.8.1735.
48. Fischer T. Testing Cryptographically Secure Pseudo Random Number Generators with Artificial Neural Networks. Proceedings of 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications. 12th IEEE International Conference On Big Data Science And Engineering, New York, USA, 2018, p. 1214–1223.
DOI: https://doi.org/10.1109/TrustCom/BigDataSE.2018.00168.
49. Hassan M. Cracking Random Number Generators using Machine Learning – Part 1: xorshift128. NCC Group, 2021. URL: https://research.nccgroup.com/2021/10/15/cracking-random-number-generators-using-machine-learning-part-1-xorshift128/ (дата обращения: 03.03.2023).
50. Fan F., Wang G. Learning From Pseudo-Randomness With an Artificial Neural Network–Does God Play Pseudo-Dice? IEEE Access. 2018, vol. 6, p. 22987–22992.
DOI: https://doi.org/10.1109/ACCESS.2018.2826448.
51. Feng Y., Hao L. Testing Randomness Using Artificial Neural Network. IEEE Access. 2020, vol. 8,
p. 163685–163693.
DOI: https://doi.org/10.1109/ACCESS.2020.3022098.
52. Chugunkov I.V., Kliuchnikova B.V., Ivanov M.A., Salikov E.A., Zubtsov A.O. New Class of Pseudorandom Number Generators for Logic Encryption Realization. Proceedings of 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, Russia,
January 27 – 30 2020, p. 271–273.
DOI: https://doi.org/10.1109/EIConRus49466.2020.9039349.
53. Dalkıran I., Danısman K. Artificial neural network based chaotic generator for cryptology. Turkish Journal of Electrical Engineering and Computer Sciences. 2010, no. 18(2), p. 225–240.
DOI: https://doi.org/10.3906/elk-0907-140.
DOI: http://dx.doi.org/10.26583/bit.2023.4.04
Ссылки
- На текущий момент ссылки отсутствуют.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.